If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16w^2-84w+63=0
a = 16; b = -84; c = +63;
Δ = b2-4ac
Δ = -842-4·16·63
Δ = 3024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3024}=\sqrt{144*21}=\sqrt{144}*\sqrt{21}=12\sqrt{21}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-12\sqrt{21}}{2*16}=\frac{84-12\sqrt{21}}{32} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+12\sqrt{21}}{2*16}=\frac{84+12\sqrt{21}}{32} $
| 5=2(3+2x) | | 5x+90=120 | | 8s^2+7s+5=0 | | -6y=-5y-10 | | 5x+90=12 | | 4.1+x/5=-8.4 | | -3+w=-9-w | | 6q^2+6q=0 | | 7x-(-13)=20 | | 7(x-5)=6(x-2) | | 8d=9d-5 | | 2.5x-4=x+5 | | 9p^2=2 | | 8d=9d−5 | | -9r-5=9-7r | | 1=t-10/2 | | 14x-30=2(7x-15) | | 3(g+11)=9 | | -12=6/5x | | 3p^2+p+8=0 | | 8b=9+5b | | 5y^2-6y+6=0 | | 13d−3d=20 | | 7x+9=7x | | 9/5a(a-5)=40 | | -3u=-2u-8 | | 5+r=22 | | 4y+3(-3y)=10 | | x+15)/2=13 | | -3-8(n+40)=-91 | | 5q=4q+4 | | 7(2y-8)=24 |